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2.2.4 Lipschitz Continuity of Convex Functions

Our goal in this section is to show that convex functions are Lipschitz continuous
inside the interior of its domain.

We will first show that a convex function is locally bounded.

Lemma 2.2. Let f be convex and x0 ∈ intdom f . Then f is locally bounded, i.e.,
∃ε > 0 and M(x0,ε)> 0 such that

f (x)≤ M(x0,ε) ∀ x ∈ Bε(x0) := {x ∈ R
n : ‖x− x0‖2 ≤ ε}.

Proof. Since x0 ∈ intdom f , ∃ε > 0 such that the vectors x0 ± εei ∈ intdom f for
i = 1, . . . ,n, where ei denotes the unit vector along coordinate i. Also let Hε(x0) :=
{x ∈ R

n : ‖x− x0‖∞ ≤ ε} denote the hypercube formed by the vectors x0 ± εei. It
can be easily seen that Bε(x0)⊆ Hε(x0) and hence that

max
x∈Bε (x0)

f (x)≤ max
x∈Hε (x0)

f (x)≤ max
i=1,...,n

f (x0 ± εei) =: M(x0,ε).

Next we show that f is locally Lipschitz continuous.

Lemma 2.3. Let f be convex and x0 ∈ intdom f . Then f is locally Lipschitz, i.e.,
∃ε > 0 and M̄(x0,ε)> 0 such that

| f (y)− f (x0)| ≤ M̄(x0,ε)‖x− y‖, ∀y ∈ Bε(x0) := {x ∈ R
n : ‖x− x0‖2 ≤ ε}.

(2.2.10)

Proof. We assume that y �= x0 (otherwise, the result is obvious). Let α = ‖y−
x0‖2/ε . We extend the line segment connecting x0 and y so that it intersects the ball
Bε(x0), and then obtain two intersection points z and u (see Fig. 2.4). It can be easily
seen that

y = (1−α)x0 +αz, (2.2.11)

x0 = [y+αu]/(1+α). (2.2.12)

It then follows from the convexity of f and (2.2.11) that

f (y)− f (x0)≤ α[ f (z)− f (x0)] =
f (z)− f (x0)

ε ‖y− x0‖2

≤ M(x0,ε)− f (x0)
ε ‖y− x0‖2,

where the last inequality follows from Lemma 2.2. Similarly, by the convexity f ,
(2.2.11), and Lemma 2.2, we have

f (x0)− f (y)≤ ‖y− x0‖2
M(x0,ε)− f (x0)

ε .

Combining the previous two inequalities, we show (2.2.10) holds with M̄(x0,ε) =
[M(x0,ε)− f (x0)]/ε .
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Fig. 2.4 Local Lipschitz continuity of a convex function

The following simple result shows the relation between the Lipschitz continuity
of f and the boundedness of subgradients.

Lemma 2.4. The following statements hold for a convex function f .

(a) If x0 ∈ intdom f and f is locally Lipschitz (i.e., (2.2.10) holds), then ‖g(x0)‖ ≤
M̄(x0,ε) for any g(x0) ∈ ∂ f (x0).

(b) If ∃g(x0) ∈ ∂ f (x0) and ‖g(x0)‖2 ≤ M̄(x0,ε), then f (x0)− f (y)≤ M̄(x0,ε)‖x0−
y‖2.

Proof. We first show part (a). Let y = x0 + εg(x0)/‖g(x0)‖2. By the convexity of
f and (2.2.10), we have

ε‖g(x0)‖2 = 〈g(x0),y− x0〉 ≤ f (y)− f (x0)≤ M̄(x0,ε)‖y− x0‖= εM̄(x0,ε),

which implies part (a). Part (b) simply follows the convexity of f , i.e.,

f (x0)− f (y)≤ 〈g(x0),x0 − y〉 ≤ M̄(x0,ε)‖x0 − y‖2.

Below we state the global Lipschitz continuity of a convex function in its interior
of domain.

Theorem 2.4. Let f be a convex function and let K be a closed and bounded set
contained in the relative interior of the domain dom f of f . Then f is Lipschitz
continuous on K, i.e., there exists constant M such that

| f (x)− f (y)| ≤ MK‖x− y‖2 ∀x,y ∈ K. (2.2.13)

Proof. The result directly follows from the local Lipschitz continuity of a convex
function (see Lemmas 2.3 and 2.4) and the boundedness of K.

Remark 2.1. All three assumptions on K—i.e., (a) closedness, (b) boundedness, and
(c) K ⊂ ridom f —are essential, as it is seen from the following three examples:
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• f (x) = 1/x, dom f = (0,+∞), K = (0,1]. We have (b), (c) but not (a); f is neither
bounded, nor Lipschitz continuous on K.

• f (x) = x2, dom f = R, K = R. We have (a), (c) and not (b); f is neither bounded
nor Lipschitz continuous on K.

• f (x) = −√
x, dom f = [0,+∞), K = [0,1]. We have (a), (b) and not (c);

f is not Lipschitz continuous on K although is bounded. Indeed, we have
limt→+0

f (0)− f (t)
t = limt→+0 t−1/2 =+∞, while for a Lipschitz continuous f the

ratios t−1( f (0)− f (t)) should be bounded.

2.2.5 Optimality Conditions for Convex Optimization

The following results state the basic optimality conditions for convex optimization.

Proposition 2.6. Let f be convex. If x is a local minimum of f , then x is a global
minimum of f . Furthermore this happens if and only if 0 ∈ ∂ f (x).

Proof. It can be easily seen that 0 ∈ ∂ f (x) if and only if x is a global minimum
of f . Now assume that x is a local minimum of f . Then for λ > 0 small enough one
has for any y,

f (x)≤ f ((1−λ )x+λy)≤ (1−λ ) f (x)+λ f (y),

which implies that f (x)≤ f (y) and thus that x is a global minimum of f .

The above result can be easily generalized to the constrained case. Given a con-
vex set X ⊆ R

n and a convex function f : X → R, we intend to

min
x∈X

f (x).

We first define the indicator function of the convex set X , i.e.,

IX (x) :=

{
0, x ∈ X ,

∞, Otherwise.

By definition of subgradients, we can see that the subdifferential of IX is given by
the normal cone of X , i.e.,

∂ IX (x) = {w ∈ R
n|〈w,y− x〉 ≤ 0,∀y ∈ X}. (2.2.14)

Proposition 2.7. Let f : X → R be a convex function and X be a convex set. Then
x∗ is an optimal solution of minx∈X f (x) if and only if there exists g∗ ∈ ∂ f (x∗) such
that

〈g∗,y− x∗〉 ≥ 0,∀y ∈ X .


